Complete Automated Local Setup for AI (ML,DL,GenAI) Development With Vscode, Git, Anaconda & Docker
Struggling to set up your local machine for AI development? This video shows you how to automate the entire process with VS Code, Git, Anaconda, and Docker!
This video is perfect for:
Beginners in Machine Learning, Deep Learning, and Generative AI
Developers who want to streamline their AI workflow
Anyone tired of time-consuming manual setups
Get ready to supercharge your AI development!
P.S. Don't forget to like and subscribe for more AI content!
vscode installation link:https://code.visualstudio.com/
anaconda installaiton
link:https://docs.anaconda.com/free/anaconda/install/index.html
docker installation link:https://docs.docker.com/desktop/install/windows-install/
miniconda installation link:https://docs.anaconda.com/free/miniconda/index.html
git installation link:https://git-scm.com/downloads
my project structure git hub link for getting the code related to logger exception setup.py and projectstructure.py
:https://github.com/sunnysavita10/project-template/tree/main
create python package using poetry:
https://nakamasato.medium.com/create-and-publish-your-first-python-package-a0af8a3b5e55
#ai #ml #deeplearning #generativeai #devlopment #project #python #pythonprogramming #machinelearning #vscode #docker #git #anaconda #miniconda
Google Form For Suggestion and Feedback : https://forms.gle/1Ut21yM2ednvpbS66
Connect with me on Social Media-
LinkedIn : https://www.linkedin.com/in/sunny-savita/
GitHub : https://github.com/sunnysavita10
Telegram : https://t.me/aimldlds
Transcript
About the course
This playlist is completely dedicated to generative AI.
Lessons
- Generative AI In-Depth Roadmap from Beginner to Expert #generativeai #artificialintelligence
- Generative AI Complete History Part-1 | Classical AI vs Modern AI | AI vs ML vs DL vs GEN AI
- Generative AI History Part2 | Language Modelling | Seq to Seq model | RNN | LSTM | GRU
- Generative AI history Final Part (part3) | Transformer | LLM | Chatgpt Training | Diffusion Model
- @LlamaIndex Introduction | RAG System | LlamaIndex Doc Walkthrough #generativeai #llamaindex #llm
- @LlamaIndex Project Setup | Simple Q/A System using OpenAI API and LlamaIndex #OpenAI #LlamaIndex
- Google Gemini Introduction Part 1 | Google Gemini Python API #gemini #generativeai #llm
- Google gemini API with Python Part 2| text to text generation | image to text generation #gemini #ai
- Google gemini API with Python Part 3| Embedding | Saftey Setting #gemini
- 🟥 Let’s build QA System with @LlamaIndex and Google Gemini!(LlamaIndex, Gemini Embedding, GeminiPro)
- @OpenAI "SORA" Just SHOCKED EVERYONE | Text-to-Video Generation | AGI | Alternatives of SORA
- LangChain v/s Llama-Index | Detailed Differences | Which one you should use?
- End to End RAG Pipeline Part-1 | RAG Architecture | Ingestion | generation | Reterival #rag #llm
- End to End RAG Pipeline Part-2 | Advance Reterival Process | RAG Architecture In depth
- RAG Pipeline from Scratch Using OLlama Python & Llama2 | | Llama2 Setup in local PC #llama2 #rag
- RAG Application using @LangChain @OpenAI and FAISS #llm #rag #python #langchain #vectordata
- RAG Application using Langchain Mistral AI and Weviate db #llm #rag #langchain #vector #mistral
- RAG Application Using OpenSource Framework @LlamaIndex and @Mistral-AI #rag #finetuning #llm
- Haystack by Deepset - Framework to Build LLM Apps | RAG Pipeline Using Haystack and OpenAI
- Discover The Power Of Multilingual Ai Voice Assistant With Google Gemini-pro And gTTS Technology!
- End to End RAG Application Using Haystack MistralAI Pinecone & FastAPI #rag #llm #haystack #mistral
- Complete Automated Local Setup for AI (ML,DL,GenAI) Development With Vscode, Git, Anaconda & Docker
- 25 Best VSCode Extensions for AI (ML,DL,GenAI) Devlopment In 2024
- Multimodal RAG Systems: Comprehensive Introduction to Next-Gen AI Technology #multimodal #rag #ai
- MultiModal RAG Application Using LanceDB and LlamaIndex for Video Processing
- Realtime Multimodal RAG Usecase Part 1 | Extract Image,Table,Text from Documents #rag #multimodal
- Realtime Multimodal RAG Usecase Part 2 | MultiModal Summrizer | RAG Application #rag #multimodal #ai
- Realtime Multimodal RAG Usecase Part 3 | MultiVectorRetriever with Langchain | RAG Application #rag
- Realtime Multimodal RAG Usecase with Google Gemini-Pro-Vision and Langchain | RAG Application #rag
- End to End RAG App with Hugging face Google Gemma &  MongoDB Vector Search #rag #ai #llm #genai
- Building Real-Time RAG Pipeline With Mongodb and Pinecone Part-1 #rag #llm #mongodb #pinecone
- Building Real-Time RAG Pipeline With Mongodb and Pinecone Part-2 #rag #llm #mongodb #pinecone
- Chat With Multiple Documents(pdfs, docs, txt, pptx etc.) using AstraDB and Langchain #rag #ai
- Built Powerful Multimodal RAG using Vertex AI(GCP), AstraDb and Langchain #rag #ai
- End to end E-Commerce Chatbot With AWS Deployment using Astra dB(Cassandra), Langchain & Open AI #ai
- Realtime Powerful RAG Pipeline using Neo4j(Knowledge Graph Db) and Langchain #rag
- Advacne RAG 01 - Powerful RAG Using Hybrid Search(Keyword+vVector search) | Ensemble Retrieval
- Advacne RAG 02 - Hybrid Search (Keyword + Vector ) & Reranking With Cohere API | Ensemble Retrieval
- End-to-End Weather Chatbot with Google DialogFlow and AWS CI/CD Deployment
- Advanced RAG 03 - Reranking with Sentence Transformers and BM25 API
- Advanced RAG 04 - Reranking with Cross Encoders, and Cohere API
- Advance RAG 05 - Merger Retriever and LongContextReorder | Lost in Middle Phenomenon
- Advance RAG 06- RAG Fusion (Get More Relevant Results for Your RAG) | Reranking With RRF
- Advance RAG 07 - Flash Reranker for Superfast Reranking
- Advance RAG 08- Powerful RAG with Langchain Contextual Compression Retriever #ai #llm #openai
- Advance RAG 09- Powerful RAG with Self Querying Retriever #ai #llm #openai
- Advance RAG 10- Powerful RAG with Parent Document Retriever #ai #llm #openai #gemini
- End-to-End RAG With Llama 3.1, Langchain, FAISS and OLlama #ai #llm #llama #huggingface
- Advance RAG 11- Powerful RAG with Sentence Window Retriever using @LlamaIndex and @qdrant #ai #llm
- Advance RAG 12- Powerful RAG with Merger Retriever and Hypothetical Document Embeddings(HyDE) #ai
- Complete @LangChain Essential in 1 shot | LangChain Core | LangServe | LangGraph | LangSmith | Agent
- Chatbot Using @LangChain With Memory(Chat History) | LangChain Core | LangSmith
- RAG Based Chatbot With Memory(Chat History) | Creating History Aware Retriever | Langchain #ai #rag
- Langchain Conversation Buffer Memory vs Conversation Buffer Window Memory | Chat History#ai #llm #yt
- Langchain Conversation Entity Memory | Langchain Memory Class | Chat History#ai #llm #yt #chatbot
- Langchain Conversation Summary Memory vs Conversation Summary Buffer Memory | Chatbot #ai #llm #rag
- LangChain Expression language(LCEL) for Chaining the Components | All Runnables | Async & Streaming