LangChain v/s Llama-Index | Detailed Differences | Which one you should use?
This video explains LlamaIndex and LangChain, two tools for creating production-ready LLM-based applications.
Purpose:
What are LlamaIndex and LangChain?
What are their core functionalities?
What types of projects or applications are best suited for each tool? (e.g., information retrieval, chatbot development)
Target Users:
Who might benefit from using each tool? (e.g., developers, researchers, businesses)
Downlaod the Notes From Here:
Click to subscribe & join the AI adventure!
#GoogleGemini #TexttoText #ImagetoText #Python #AI #MachineLearning #textgeneration #embedding #gemini #langchain #llamaindex
Google Form : https://forms.gle/1Ut21yM2ednvpbS66
Connect with me on Social Media-
LinkedIn : https://www.linkedin.com/in/sunny-savita/
GitHub : https://github.com/sunnysavita10
Telegram : https://t.me/aimldlds
About the course
This playlist is completely dedicated to generative AI.
Lessons
- Generative AI In-Depth Roadmap from Beginner to Expert #generativeai #artificialintelligence
- Generative AI Complete History Part-1 | Classical AI vs Modern AI | AI vs ML vs DL vs GEN AI
- Generative AI History Part2 | Language Modelling | Seq to Seq model | RNN | LSTM | GRU
- Generative AI history Final Part (part3) | Transformer | LLM | Chatgpt Training | Diffusion Model
- @LlamaIndex Introduction | RAG System | LlamaIndex Doc Walkthrough #generativeai #llamaindex #llm
- @LlamaIndex Project Setup | Simple Q/A System using OpenAI API and LlamaIndex #OpenAI #LlamaIndex
- Google Gemini Introduction Part 1 | Google Gemini Python API #gemini #generativeai #llm
- Google gemini API with Python Part 2| text to text generation | image to text generation #gemini #ai
- Google gemini API with Python Part 3| Embedding | Saftey Setting #gemini
- đ„ Letâs build QA System with @LlamaIndex and Google Gemini!(LlamaIndex, Gemini Embedding, GeminiPro)
- @OpenAI "SORA" Just SHOCKED EVERYONE | Text-to-Video Generation | AGI | Alternatives of SORA
- LangChain v/s Llama-Index | Detailed Differences | Which one you should use?
- End to End RAG Pipeline Part-1 | RAG Architecture | Ingestion | generation | Reterival #rag #llm
- End to End RAG Pipeline Part-2 | Advance Reterival Process | RAG Architecture In depth
- RAG Pipeline from Scratch Using OLlama Python & Llama2 | | Llama2 Setup in local PC #llama2 #rag
- RAG Application using @LangChain @OpenAI and FAISS #llm #rag #python #langchain #vectordata
- RAG Application using Langchain Mistral AI and Weviate db #llm #rag #langchain #vector #mistral
- RAG Application Using OpenSource Framework @LlamaIndex and @Mistral-AI #rag #finetuning #llm
- Haystack by Deepset - Framework to Build LLM Apps | RAG Pipeline Using Haystack and OpenAI
- Discover The Power Of Multilingual Ai Voice Assistant With Google Gemini-pro And gTTS Technology!
- End to End RAG Application Using Haystack MistralAI Pinecone & FastAPI #rag #llm #haystack #mistral
- Complete Automated Local Setup for AI (ML,DL,GenAI) Development With Vscode, Git, Anaconda & Docker
- 25 Best VSCode Extensions for AI (ML,DL,GenAI) Devlopment In 2024
- Multimodal RAG Systems: Comprehensive Introduction to Next-Gen AI Technology #multimodal #rag #ai
- MultiModal RAG Application Using LanceDB and LlamaIndex for Video Processing
- Realtime Multimodal RAG Usecase Part 1 | Extract Image,Table,Text from Documents #rag #multimodal
- Realtime Multimodal RAG Usecase Part 2 | MultiModal Summrizer | RAG Application #rag #multimodal #ai
- Realtime Multimodal RAG Usecase Part 3 | MultiVectorRetriever with Langchain | RAG Application #rag
- Realtime Multimodal RAG Usecase with Google Gemini-Pro-Vision and Langchain | RAG Application #rag
- End to End RAG App with Hugging face Google Gemma &  MongoDB Vector Search #rag #ai #llm #genai
- Building Real-Time RAG Pipeline With Mongodb and Pinecone Part-1 #rag #llm #mongodb #pinecone
- Building Real-Time RAG Pipeline With Mongodb and Pinecone Part-2 #rag #llm #mongodb #pinecone
- Chat With Multiple Documents(pdfs, docs, txt, pptx etc.) using AstraDB and Langchain #rag #ai
- Built Powerful Multimodal RAG using Vertex AI(GCP), AstraDb and Langchain #rag #ai
- End to end E-Commerce Chatbot With AWS Deployment using Astra dB(Cassandra), Langchain & Open AI #ai
- Realtime Powerful RAG Pipeline using Neo4j(Knowledge Graph Db) and Langchain #rag
- Advacne RAG 01 - Powerful RAG Using Hybrid Search(Keyword+vVector search) | Ensemble Retrieval
- Advacne RAG 02 - Hybrid Search (Keyword + Vector ) & Reranking With Cohere API | Ensemble Retrieval
- End-to-End Weather Chatbot with Google DialogFlow and AWS CI/CD Deployment
- Advanced RAG 03 - Reranking with Sentence Transformers and BM25 API
- Advanced RAG 04 - Reranking with Cross Encoders, and Cohere API
- Advance RAG 05 - Merger Retriever and LongContextReorder | Lost in Middle Phenomenon
- Advance RAG 06- RAG Fusion (Get More Relevant Results for Your RAG) | Reranking With RRF
- Advance RAG 07 - Flash Reranker for Superfast Reranking
- Advance RAG 08- Powerful RAG with Langchain Contextual Compression Retriever #ai #llm #openai
- Advance RAG 09- Powerful RAG with Self Querying Retriever #ai #llm #openai
- Advance RAG 10- Powerful RAG with Parent Document Retriever #ai #llm #openai #gemini
- End-to-End RAG With Llama 3.1, Langchain, FAISS and OLlama #ai #llm #llama #huggingface
- Advance RAG 11- Powerful RAG with Sentence Window Retriever using @LlamaIndex and @qdrant #ai #llm
- Advance RAG 12- Powerful RAG with Merger Retriever and Hypothetical Document Embeddings(HyDE) #ai
- Complete @LangChain Essential in 1 shot | LangChain Core | LangServe | LangGraph | LangSmith | Agent
- Chatbot Using @LangChain With Memory(Chat History) | LangChain Core | LangSmith
- RAG Based Chatbot With Memory(Chat History) | Creating History Aware Retriever | Langchain #ai #rag
- Langchain Conversation Buffer Memory vs Conversation Buffer Window Memory | Chat History#ai #llm #yt
- Langchain Conversation Entity Memory | Langchain Memory Class | Chat History#ai #llm #yt #chatbot
- Langchain Conversation Summary Memory vs Conversation Summary Buffer Memory | Chatbot #ai #llm #rag
- LangChain Expression language(LCEL) for Chaining the Components | All Runnables | Async & Streaming